Abstract— the MPEG-7 international standard contains new tools for computing similarity and classification of audio clipsand for



Figure 1. The SoundSplitter application for independent subspace analysis of audio.

The technique of independent subspace analysis (ISA) was developed to describe individual source components within a single-
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Figure 2. Log-frequency power spectrum of a mixed percussion recording.

Bass,

]

Figure 3. Spectrogram reconstruction of the bass drum estimated by re-filtering the input spectrogram using 1SA basis
functions.The function to the left is frequency mask component and the function across the top is the time masking component.
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Figure 4. Masking functions and spectrogram reconstruction of the snare drum.

Figure 5. Masking functions and spectrogram reconstruction of the cow bell.
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Figure 6. Separated audio signals using | SA basis functions with spectrogram re-filtering.
A. Independent Subspace Analysis within MPEG-7

The MPEG-7 standard consists of descriptors and description schemes that are defined by a modified version of XML schema
called the MPEG-7 description definition language (DDL). A large number of descriptors have been defined covering images,
audio, video and general multimedia usage. The DDL language ensures that media content description data may be shared
between applications in much the same way that sound files are exchanged using standard file formats. For example, an audio
spectrum is defined by a descriptor called Audi oSpect r umEnvel ope. To usethe descriptor, datais instantiated using the
standardized DDL syntax. In this case, the spectrum datais stored as a series of vectors within the class.

The Audi oSpect r umBasi s descriptor contains basis functions that are used to project high-dimensional spectrum
descriptions into alow-dimensional representation contained by the Audi oSpect r unPr oj ecti on descriptor, see DDL



</ Matrix>
</ Basi sFuncti ons>

</ Audi oD>

DDL Example 1. Description of five basis functions using AudioSpectrumBasisType. The description definition language is
based on XML schema with some extensions specific to MPEG-7. (The floating-point resolution has been truncated for clarity).

B. Independent Subspace Extraction Method

The extraction method for Audi oSpect r unBasi s and Audi oSpect r unPr oj ect i on isdetailed within the MPEG-7
standard. It is considered that these steps must be used in extracting a reduced-dimension description in order to conform to the
standard. Within each step there is opportunity for aternate implementations. As such, the following procedure outlines the
standardized extraction method for | SA basis functions:

1. Power spectrum: instantiate an Audi oSpect r uneEnvel ope descriptor using the extraction method defined in
Audi oSpect runkEnvel opeType. Theresulting datawill be a SeriesOfV ectors with M frames and N frequency bins.

2 Log-scale norming: for each spectral vector, x, in Audi oSpect r unEnvel ope, convert the power spectrum to a decibel
scale

z =10l0g,,(x)

and compute the L2-norm of the vector elements:
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the new unit-norm spectral vector is calculated by:
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3 Observation matrix: place each vector row-wise into a matrix. The size of the resulting matrix is L2onvert







where 'Y isamatrix consisting of the reduced dimension features after projection of the spectrum against the basis V.
For independent spectrogram reconstruction, extract the non-normalized spectrum projection by skipping the normalization step
(2) in Audi oSpect r unBasi s extraction. Thus:

Now, to reconstruct an indpendent spectrogram component use the individual vector pairs, corresponding to the Kth vector in
Audi oSpect runBasi s and Audi oSpect r unPr oj ect i on, and apply the reconstruction equation:

+

X =YV,

where the + operator indicates the transpose for SVD basis functions (which are orthonormal) or the pseudo-inverse for ICA
basis functions (non-orthogonal).

The method outlined above represents a powerful tool that can be used for many purposes. The extracted sources may be
subjected to further analysis such as tempo estimation, rhythm analysis or fundamental frequency extraction. For example, we
now consider how | SA features may be used for sound recognition and similarity judgements for general audio.

I1l. GENERALIZED SOUND RECOGNITION

A number of tools exist within the MPEG-7 framework for computing similarity between segments of audio. In this section we
describe tools for representing category concepts as well as tools for computing similarity in a general manner. The method
involves training statistical models to learn to recognize the classes of sound defined in ataxonomy.

A. Taxonomies
A taxonomy consists of a humber of sound categories organized into a hierarchical tree. For example, voice, instruments,
environmenta sounds, animals, etc. Each of these classes can be broken down further into more detailed descriptions such as:
female laughter, rain, explosions, birds, dogs, etc.
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Figure 8. A controlled-term taxonomy of part of the Musical Instruments hierarchy

Figure 8 shows musical instrument controlled terms that are organized into a taxonomy with “Strings’ and “Brass’. Each term
has at least one relation link to another term. By default, a contained term is considered a narrower term (NT) than the containing
term. However, in this example, “Fiddle” is defined as being a nearly synonymous with, but less preferable than, “Violin”. To
capture such structure, the following relations are available as part of the Cont r ol | edTer mdescription scheme:

BT —Broader term. Therelated term is more general in meaning than the containing term.

NT — Narrower term. The related term is more specific in meaning than the containing term.

US—Use Therelated term is (nearly) synonymous with the current term but the related term is preferred to the current
term.

UF —Usefor. Use of the current term is preferred to the use of the (nearly) synonymous related term.
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RT — Related Term. Related term is not a synonym, quasi-synonym, broader or narrower term, but is associated with
the containing term.

The purpose of the taxonomy is to provide semantic relationships between categories. As the taxonomy gets larger and more
fully connected the utility of the category relationships increases. Figure 9 shows the taxonomy in Figure 8 combined into a
larger classification scheme including animal sounds, musical instruments, Foley sounds (sound effects for film and television),
and impact sounds. By descending the hierarchical tree we find that there are 17 leaf nodes in the taxonomy. By inference, a
sound segment that is classified in one of the leaf nodes inherits the category label of its parent node in the taxonomy. For
example, asound classified as a“Dog Bark” aso inheritsthe label “Animals’. We shall adhere to this taxonomy for illustrative
purposes only; MPEG-7 allows full flexibility in defining taxonomies using controlled terms and can be used to define much
larger taxonomies than the given example.
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2) Multi-dimensional Gaussian Distributions

The multi-dimensional Gaussian distribution is used for modeling the states. Gaussian distributions are parameterized by a1 x n
vector of means, m, and an n x n covariance matrix, K, where n is the number of features (columns) in the sound observation
vectors. The expression for computation of probabilities for a random column vector, X, given the Gaussian parametersis:

0= epg L(x- m)TK*(x- my
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3) Continuous Hidden Markov Models
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DDL Example 2. Instantiation of a Probability Model in the NIPEG-7 DDL language. The model parameters were extracted
using a maximum a posteriori estimator. The description schegme represents theinitial state distribution, transition matrix, state
labels, and individual Gaussian means and covariance matrices for the states.

IV. SouND CLASSIFICATION, SIMILA

A. Classification Application

RITY AND EXAMPLE SEARCH APPLICATIONS

Wetrained 19 HMMs, using MAP estimation, on a large datalpase (1000+ sounds) divided into 19 sound classes as described by
the leaf nodes in the general sound taxonomy shown in Figurg9 above. The database was split into separate training and testing
data sets. That is, 70% of the sounds were used for training thg HMM models and 30% were used to test the recognition
performance of the models on novel data. Each sound in the tast set was presented to all 19 modelsin paralel, the HMM with the

maximum likelihood score, using a method called Viterbi dec

see Figure 11.

bding, was selected as the representative class for the test sound;




Table 1. Performance of 19 classifiers trained on 70% and cross-validated on 30% of alarge sound database. The mean
recognition rate indicates high recognizer performance across al the models..

Model Name % Correct
Classification

[1] AltoFlute 100.00
[2] Birds 80.00
[3] Pianos (Bosendorfer) 100.00
[4] Céllos (Pizz and Bowed) 100.00
[5] Applause 83.30
[6] Dog Barks 100.00
[7] English Horn 100.00
[8] Explosions 100.00
[9] Footsteps 90.90
[10] Glass Smashes 92.30
[11] Guitars 100.00
[12] Gun shots 92.30
[13] Shoes (squeaks) 100.00
[14] L aughter 94.40
[15] Telephones 66.70
[16] Trumpets 80.00
[17] Vidlins 83.30
[18] Male Speech 100.00
[19] Female Speech 97.00

Mean Recognition Rate 92.646

B. Generalized Sound Smilarity

In addition to classification, it is often useful to obtain a measure of how close two given sounds are in some perceptua sense. It
is possible to leverage the internal, hidden, variables generated by an HMM in order to compare the evolution of two sounds
through the model’s state space. For each input query sound to a HMM, the output is a series of states through which sound
passed. Each sampled state is given a likelihood that is used to cumulatively compute the probability that the sound actually
belongs to the given model. The SoundModel St at ePat h descriptor contains the dynamic state path of a sound through a
HMM model. Sounds are indexed by segmentation into model states or by sampling of the state path at regular intervals. Figure
12 shows a spectrogram of adog bark sound with the state path through the “DogBark” HMM shown below.
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Figure 12. Dog bark spectrogram and the state path tlhrough the dog bark continuous hidden Markov model

The state path is an important method of description since it describes the evolution of a sound with respect to physical states.
The state path shown in the figure indicates physical states for the dog bark; there are clearly delimited onset, sustain and
termination/silent states. Thisis true of most sound classes; the individua states within the class can be inspected via the state
path representation and a useful semantic interpretation can often be inferred.



There are many possible methods for computing similarity between state paths, dynamic time warping and state histogram sum-



D. Non-Categorical Smilarity Ratings

Using such similarity measures it is possible to automatically organize sonic materials for a composition. The examples given
above organize similarity rankings according to ataxonomy of categories. However, if a non-categorical interpretation of
similarity is required one may simply train asingle HMM, with many states, using awide variety of sounds. Similarity may then
proceed without category constraints by comparing state-path histograms in the large generalized HMM state space.

V. CONCLUSIONS

In this paper we have outlined some of the tools that are available within the MPEG-7 standard for managing complex sound
content. In the first part of the paper we presented independent subspace analysis as a method for performing analysis and re-
synthesis of individual sourcesin amixed audio file. We aso showed that |SA may be used to obtain statistically salient features
that may be applied with great generality to sound recognition and sound similarity tasks.

One of the major design criteria for the tools was the ability to analyze and represent a wide range of acoustic sources including
textures and mixtures of sound. The tools presented herein exhibited good performance on musical sounds as well as
traditionally non-musical sources such as vocal utterances, animal sounds, environmental sounds and sound effects. Amongst the
applications presented were robust sound recognition using trained probability model classifiers and sound similarity matching
using interna probability model state variables.

In conclusion, the description schemes and extractor methodologies outlined in this paper provide a consistent framework for
analyzing, indexing and querying sounds from a wide range of different classes. These tools have been made widely available as
a component of the reference software implementation of the MPEG-7 standard. It is hoped that the ability to manipulate sound
in novel ways and the ability to search for “sounds like” candidates in a large database of sounds will become important new
tools for sound-designers, composers and many other users of new music technology.
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